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One of us [1] has considered the equations of the quasi-linear approx=
imation for a plasma with collisions, which, for a spatially homogen-
eous plasma without a magnetic field in the stationary case, are as
follows:
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in which e{w, K) is the dielectric constant of the plasma for longitudinal
waves (k iE), £ (p) is the distribution function for particles of type @, Sa
is the collision integral (which is put in the Landau form for a Coulomb
plasma without allowance for polarization), and vq is the reciprocal re-
laxation time due to collisions in the rapidly varying (pulsating) part of
the distribution function, In general,'vy is a function of velocity, and

itcanbe expressed via the distribution function for the background under

the conditions for which the equations of the quasi-linear approximation
were derived. The vq for a slightly nonequilibrium plasma may be con-
sidered as some effective collisional frequency averaged over the mo-

menta, which for the electrons makes a certain contribution to the imag-.

inary part of the dielectric constant, where vg can be calculated [2, 3]
if f4 is known,

An important point is that Eqs. (0.1) were derived for a monochromatic '
longitudinal wave, and so it is not a necessary condition to have a suf-
ficiently large width for the wave packet, which condition is charac-
teristic of the quasi-linear theory previously given. However, as in the
quasi-linear theory, it is assumed that the oscillation amplitude is small
(so that nontinear interaction between waves can be neglected), and so

el Ep/mT 0Ll , (0. 3)
while the dimensionless parameter etzzlElz/ma’I'aua2 may be on the
order of, or even much greater than, unity.

In §1 of this paper we use the equations for the energy and momentum
to derive expressions for the electron drift velocity and the difference
Te - Tj (electron and ion temperatures) for a two-component plasma
in a given wave field on the assumption of Maxwellian background dis-
tribution functions for the electrons and ions. Expression (1.14) for the
temperature difference extends to longitudinal waves a result obtained
in [4] on the heating of electrons in a strong electric field.

Section 2 deals with the amplitudes of steady-state high-frequency
Langmuir waves when the plasma contains a steady electron beam.
We derive in §3 the steady-state electron distribution function for the
one-dimensional case on the pasis of a model collision integral, and
this differs only slightly from the Maxwellian case in which the spatial
dispersion is slight.

§1. Electron drift and heating in the electric field of
a wave. We use the quasi-linear approximation for the
balance of momentum and energy for particles of type
a. We multiply the first equation in (0. 1) by np, and
napz/zma and integrate with respect to momentum,

which gives, respectively, for the momentum and en-
ergy
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characterizes the change in momentum and energy of
component a as a result of interaction between the par-
ticles and the wave,

In deducing (1.1) we have used an expression for the
rapidly varying current densityv of component 4

. . v df
it =~ ‘ea’"agm (BG ).

in addition to

(PLE> = ko G 'E

which, in the quasi-~linear approximation, relates

jg! to the rapidly varying charge density pa', while

() denotes averaging over the fast pulsations,
Summation of (1.1) and (1.2) over all a gives

D <Pty == N (jlEy =0,

which expresses the fact that the work done by the
electric field is zero in the steady state, and which is
equivalent to the third equation in (0.1). *

We assume that the steady~state distribution func~
tions for all the components are Maxwellian in the
zeroth approximation, but that each component can
have its own temperature and velocity:

fom (VavgP exp{— el pr = . 1g

26%

Consider the integral in (1. 3). We set the x-axis

along k, integrate with respect to p,, and convert to
the dimensionless variables ’

*The method of division into background and pul-
sations used in deriving (0.1) differs from that used
in the quasi-linear theory, where the pulsation spec-
trum must be fairly broad.
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in which wqg is the Langmuir frequency of component a.
Itis readily shown that the latter integral is expressed
via the complex error integral

w(z) = 6‘2’{1 + Vn Se"dt} z=z+iy
0

with the balance equations taking the form
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The integrals appearing on the right-hand side here
have been calculated [1, 3,5] and can be put as
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in which t,®and (" are the relaxation times for
the directional velocities and temperatures, respec-
tively, in the collision of charged particles of type a
with particles of type b,

If there is no spatial dispersion (k = 0), the direc~-
tional velocities of the electrons and ions in a two-
component plasma are zero, and we get

2| E lzvg‘rg)
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(1.12)
which is precisely the relation for electron heating in
a strong electric field, because © <@, v,7,!" = ,M/m
3,41

We take the asymptotic expansion of §{zg) for lzg4} >
> 1 and retain only the first terms in k to get from
(1.7), (1.8), (1.10), and (1.11) the equations for the
electron velocity and temperature in the case of slight
spatial dispersion:
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The latter equation does not take into account the
directional velocity of the electrons, because VeTel( u) =
=11[3], and (1.12) gives ug < ve. These expressions

correspond to high~frequency Langmuir waves for
which w > kvg,

§2, Steady-state waves In a plasma. The spectrum
and amplitude of these waves may be found from the
second and third equations in (0.1). Substitution from
(1. 4) into the expression for the dielectric constant in
(0.2) gives the following in terms of the complex error
integral:
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The function ¥(zg) and the dimensionless variables
z4 and 1y have the meanings of 81 [see (1.5) and (1.9].

Consider an electron-ionplasma witha steady elec-
tron beam whose directional velocity substantially ex-
ceeds the thermal velocity of the plasma electrons. The
linear theory indicates that increasing longitudinal
high-frequency (w~ we) Langmuir waves are excited,
whose phase velocity w/k = y, (beam velocity) and
whose increment for a cold beam is (no/ne 173 (the
subscript 0 subsequently denotes quantities referring
tothe beam, whichis considered as an additional com-
ponent of the plasma). Consider the dispersion equation
for such waves.

We use the asymptotic expansion of P(zg) for lzal >
> 1, i.e., we assume that

(0 —kuy)® + v? > kv,*
which gives from (2.1) that
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Passing to a collision-free plasma(ve, vy = 0, e ™

— 0), we get from (2. 3) the usual dispersion equation
for the high-frequency Langmuir waves excited by a
fast mono-energetic electron beam:

1 — @0 — 0?f(0 — ku,)? =0, 2.5
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where the effect of the ions can be neglected in this
case.

Now w = ku, — ¥ in the linear theory, wherey is a
small quantity proportional to the increment, and so
it is reasonable to suppose that (w — kuy P> voz, since

for attainment of the quasi-linear state it is necessary

for the increment in the linear thedry to exceed the
damping decrement, which is proportional to v,. On
this basis, and assuming also that

(0) - kue)z > vez9 o? >’ (kue)'2 ’

we put (2.4) in the form
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o
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whereupon (2. 3) becomes (2.5).

This system may be solved by successive approx-
imation. We assume that

o—ku =05, 11, 2.7)

Substitution of (2,7) and (2.5) into (2. 6) gives the
following when we neglect the terms 3/'2no/ne and
2kue/w relative to unity:

¥ = — (%ng/ng)'s, % = 2vo/V, -

In the next approximation we incorporate the small
terms in (2.5) and (2. 6)'in order to find us. Then we
use the momentum-balance equation for the plasma
electrons to get an expression for the field energy,

| E 285 = Yamu?ne v 2 (% -+ s, 2.8)
which implies that this energy substantially exceeds
the kinetic energy of the beam, which is in qualitative
agreement with the result [6] for the maximum energy
of the oscillations in the injection of a monoenergetic
beam into a semi-infinite plasma, All the same, the
fieldenergy of (2. 8) remains much less than the thermal
energy of the plasma electrons, in accordance with the
existence of a small parameter in the quasi-linear
theory of (0. 3).

The low-frequency oscillations excited by a slow
beam can similarly be examined in the quasi-linear
approximation,

§3, Distribution function. The steady-state distri-
bution function in the presence of longitudinal waves
differs from the Maxwellian case and should be de-
duced from the first equation in (0.1), which in the
general case is an integro-differential equation for fa,
while the distribution functions for the other components
in 8, and v, also must be determined, This makes it
very difficult to solve this system of equations even
for a two-component plasma. The problem may be
greatly simplified by using a model collision integral.

We calculate the electron distribution function in
the one-dimensional case on the assumption that a
longitudinal wave distorts fe only in its direction of
propagation along k. It is convenient to take the ex-
pression representing Sg in the following form for
Coulomb collisions:

anm Ti dfe
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m dy

in which Tj is ion temperature, while 74;(T) defines
the relaxation time of T; and Tg.

Integral Sg in the form of (3.1) takes into account
only electron-ion collisions, since the term corres-
ponding to electron-electron collisions is nonlinear,.
Ginzburg [ 7] has shown that these collisions need be
considered only for low frequencies, when «* <« V*Z,
in which v, is some effective collisional frequency that
defines the contribution to the conductivity. We can
use a model collision integral in the Bathnagar-Gross-
Crook form in order to take into account the collisions
of electrons withmolecules in a weaklyionizedplasma,
but this gives a more complicated differential equation
for fe.

The mtegral of (3.1) provides conservation of mo-
mentum, energy, and number of particles, and also
Sei = 0 in a state of equilibrium, when fe is Maxwellian
and Te = Tj.

Removing one differentiation, we have from (0.1)
with (3.1) the equation for fe:

621 df, my .
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has the dimensions of frequency andmay be considered
as the effective frequency of the collisions of the elec-
trons with the wave,

It is simple to solve the linear homogeneous equation
(3.2); we put v, =(w + ia)/k and at=é&+ vé to ex-
press the solution as

14

fe='Cexp{—~';—z;—,z—+ ngk Im {v In (1 —_ 7;':)]} , (3.4

in which C is a constant of integration.

The first term in the exponential corresponds to a
Maxwellian distribution with a temperature equal to
T;, while the second is a correction dependent on the
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wave amplitude. It is clear from (3. 4) that the field
correction is maximum for velocities near w/k, the
phase velocity of the wave, If we completely neglect
spatial dispersion and expand the logarithm as a

power series in 1/v_, we get (3.4) as

fo=Cexp{— mo? L. (3.5)

2T (1 + 82/ (0 +v%)

Then the electron distribution function is exactly
Maxwellian for k = 0, but with an increased tempera-
ture, which is defined by (1.12), as is readily shown
from (3.3).

The figure shows curves for the electron distribution function inthe
quasi-linear approximation, as calculated from (8.4) and (3.5). The
abscissa is the dimensionless velocity ¢ = kv/w, while the ordinate is
the dimensionless function F(&), which equals the square root of the ex-
ponent divided by mwz/QTikz. The curves are for different values of
&/w, which characterizes the relative energy of the wave field: 1 and
2 correspond to §/w = 0.1, and 3 and 4 to §/w = 1, It was also assumed
that & » yez in the calculations. Curves 1 and 3 correspond to a
Maxwellian distribution with an increased temperature [formula (3. 5)]
and are straight lines, while curves 2 and 4 show the occurrence of a
plateau on the disiribution function near the phase velocity of the wave
[formula (3.4)]. It is clear that the width of the plateau increases with
the amplitude of the wave. If we expand the exponent in (8.4) as a
power series in (v — wW/k) and retain terms only up to the second degree,
we can show that the distribution function in the plateau region is also
close to Maxwellian, but with a different effective temperature:

T, =T,(148/v,).

The plateau becomes strictly horizontal (ve >0, T, =) ina
plasma without collisions.
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